Unconditional stability of the Foschini–Miljanic algorithm
نویسندگان
چکیده
منابع مشابه
Unconditional stability of the Foschini-Miljanic algorithm
In this note we prove the unconditional stability of the Foschini-Miljanic algorithm. Our results show that the Foschini-Miljanic algorithm is unconditionally stable (convergent) even in the presence of bounded time-varying communication delays, and in the presence of topology changes. The implication of our results may be important for the design of Code Division Multiple Access (CDMA) based w...
متن کاملFeasible Scaled Region of Teleoperation Based on the Unconditional Stability
Applications of scaled telemanipulation into micro or nano world that shows many different features from directly human interfaced tools have been increased continuously. Here, we have to consider many aspects of scaling such as force, position, and impedance. For instance, what will be the possible range of force and position scaling with a specific level of performance and stability? This kno...
متن کاملUnconditional Stability for Multistep ImEx Schemes: Theory
This paper presents a new class of high order linear ImEx multistep schemes with large regions of unconditional stability. Unconditional stability is a desirable property of a time stepping scheme, as it allows the choice of time step solely based on accuracy considerations. Of particular interest are problems for which both the implicit and explicit parts of the ImEx splitting are stiff. Such ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولUnconditional stability of a partitioned IMEX method for magnetohydrodynamic flows
Magnetohydrodynamic (MHD) flows are governed by Navier–Stokes equations coupled with Maxwell equations through coupling terms. We prove the unconditional stability of a partitioned method for the evolutionary full MHD equations, at high magnetic Reynolds number, written in the Elsässer variables. The method we analyze is a first-order onestep scheme, which consists of implicit discretization of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2012
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2011.09.051